Procedure
faktorial (input N : integer,output Fak :
real)
{I.S.
: harga N sudah terdefinisi}
{F.S.
: menghasilkan harga faktorial dari N}
Kamus:
I : integer {pencacah}
Algoritma:
If
(N=0) or (N=1)
Then
Fak ← 1
Else
Fak ← 1
For i ← 2 to N do
Fak ← Fak * i
Endfor
Endif
endprocedure
----- -----------------------------------------------------------
Tmin(n)
= 1
Tmax(n)
= 3n
Tavg(n)
= (1+3n)/2
= 4/2n
= 2n
Kemudian
meghitung notasi big oh, omega dan theta
nya tiap T(n)
t
min(n)=n
-Big
oh(O)
T(n)≤O (g(n))
1≤1(1)
1≤2(2)
1≤3(3)
c=3
n0=n
-Big
omega(Ω)
T(n)≥ Ω (g(n))
1 ≥ 1(1)
1 ≥2(2)
n0 =n
c =2
-big
theta(θ)
C2(g(n)) ≤ T(n) ≥ C1 (g(n))
batas
atas
untuk
t max
t
max(n)=3n
-Big
oh(O)
T(n)≤O (g(n))
3n≤1(1)
3n≤2(2)
3n≤3(3)
n0 =n
c =3
-Big
omega(Ω)
T(n)≥ Ω (g(n))
3n ≥ 1(1)
3n ≥ 2(2)
n0 =n
c =2
-big
theta(θ)
C1(g(n)) ≤ T(n) ≤ C2 (g(n))
batas
atas
C1(g(n))
≤ T(n)
2n ≤ 1 ≤3n
n0 =n
c1 =3
batas
bawah
T(n)
≤ C2 (g(n))
2n≤1≤3n
n0 =n
c2 =3
untuk
t average
T
avg(n)=3+n/n
t(n)=2n
-Big
oh(O)
T(n)≤O (g(n))
1≤1(1)
1≤2(2)
1≤3(3)
n0 =n
c =3
-Big
omega(Ω)
T(n)≥ Ω (g(n))
1≥ 1(1)
1≥ 2(2)
n0 =2
c =2
-big
theta(θ)
C2(g(n)) ≤ T(n) ≤ C1 (g(n))
batas
atas
C2(g(n)) ≤ T(n)
2n ≤ 1 ≤3n
n0 =n
c1 =3
batas
bawah
T(n) ≤ C1 (g(n))
2n ≤ 1 ≤3n
n0 =n
c2 =3